Art-directed muscle simulation for high-end facial animation
نویسندگان
چکیده
We propose a new framework for the simulation of facial muscle and flesh that so significantly improves the technique that it allows for immediate mainstream use of anatomically and biomechanically accurate muscle models as a bread and butter technique in a high-end production quality pipeline. The key idea is to create a blendshape system for the muscles that gives the precise directability and controllability required in a high-end production environment. The blendshape muscles are used to drive the underlying anatomically and biomechanically motivated simulation in a way that is unbound by the typical restrictions of a simulation system while still retaining the desirable degree of freedom richness that leads to high quality results. We show that we are able to target production quality facial shapes, whether from scans or an animation system, and illustrate that the resulting nonlinear simulation in-betweens are of higher quality than those obtained from traditional linear blendshapes. We also demonstrate the ability to selectively improve areas on a given blendshape using the results of a simulation, as well as the ability to edit muscle shapes and paths in order to produce directability for animator control. Then, we show how these techniques can be used to transition from one blendshape to another or even track and selectively modify an entire performance. The efficacy of our system is further demonstrated by using it to retarget animation onto new creature models given only a single static rest pose as input.
منابع مشابه
Behavioral Animation of Faces: Parallel, Distributed, and Real-Time
Facial animation has a lengthy history in computer graphics. To date, most efforts have concentrated either on labor-intensive keyframe schemes, on manually animated parameterized methods using FACS-inspired expression control schemes, or on performance-based animation where facial motions are captured from human actors. As an alternative, we propose the fully automated animation of faces using...
متن کاملPhoto-Realistic Head Model for Real-Time Animation
In the recent years the average performance of computers increased significantly partly due to the ubiquitous availability of graphics hardware. Photorealistic rendering of human faces is no longer restricted to offline rendering and use in movies. Even portable machines and to some degree high-end mobile devices offer enough performance to synthesize photorealistic facial animation in real tim...
متن کاملMuscle and Skin Model for Facial Animation Submitted to the University of Glasgow
Facial animation is a popular area of research which has been around for over thirty years, but even with this long time scale, automatically creating realistic facial expressions is still an unsolved goal. This work furthers the state of the art in computer facial animation by introducing a new muscle and skin model and a method of easily transferring a full muscle and bone animation setup fro...
متن کاملRealistic 3D Human Facial Animation
Construction and animation of realistic human facial models is an important research field in computer graphics. How to simulate the motions of human faces on 3D facial models in real-time to generate realistic facial expressions is still a challenge. In this paper, a technique to simulate the human facial animation realistically in real-time is presented. First of all, the 3D facial model is d...
متن کاملPhysically-based facial modelling, analysis, and animation
We develop a new 3D hierarchical model of the human face. The model incorporates a physically-based approximation to facial tissue and a set of anatomically-motivated facial muscle actuators. Despite its sophistication, the model is efficient enough to produce facial animation at interactive rates on a high-end graphics workstation. A second contribution of this paper is a technique for estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016